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Chaos and Anderson-like localization in polydisperse granular chains
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We investigate the dynamics of highly polydisperse finite granular chains. From the spatiospectral properties
of small vibrations, we identify which particular single-particle displacements lead to energy localization. Then,
we address a fundamental question: Do granular nonlinearities and the resulting chaotic dynamics destroy this
energy localization? Our numerical simulations show that for moderate nonlinearities, the overall system behaves
chaotically, and spreading of energy occurs. However, long-lasting chaotic energy localization is observed for
particular single-particle excitations in the presence of the nonsmooth nonlinearities. On the other hand, for
sufficiently strong nonlinearities, the granular chain reaches energy equipartition. In this case, an equilibrium
chaotic state is reached independent of the initial position excitation.
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I. INTRODUCTION

Granular solids are densely packed assemblies of polydis-
perse grains commonly found in nature and industry [1–3].
Recent technical and conceptual advances on the vibrational
analysis of micro [4–6] and macro [7] granular solids led to
a better understanding of their dynamics and revealed novel
mechanical features. In addition, mesoglasses made as granular
assemblies of brazed aluminum beads have also been used
for fundamental studies in glass physics, including classical
(elastic) Anderson localization [8] and its mobility gaps [9].
However, to further probe the intrinsic transport and me-
chanical properties of granular solids, a deeper understanding
of the anharmonic grain contact interactions is required [3].
These, in combination with features such as structural disorder
and polydispersity, make the vibrational energy transport in
granular solids a complex, open major challenge in physics.
To this end, studies of the simplified system of polydisperse
granular chains are essential for a better understanding of
energy transport in granular solids.

Granular chains are a vibrant and rapidly expanding area of
research [10–14], providing a test bed for fundamental studies
of nonlinear dynamics including solitary waves, breathers,
nonlinear normal modes, as well as different engineering
applications such as tunable waveguides, shock- and energy-
absorbing layers, and acoustic diodes. Regarding polydisperse
chains, several studies [12,15–17] have been devoted to the
highly nonlinear regime where precompression forces are
absent and the structure acts as a sonic vacuum that does
not transmit sound. Recently, few studies on the dynamics of
disordered granular chains in the presence of precompression
forces have also appeared [18–20] showing that energy transfer
varies significantly from the strongly precompressed (near
linear) limit to the weakly compressed (highly nonlinear)
regime. This is due to the unique nature of the system,
allowing the coexistence of extended and localized modes,
along with the particular granular nonlinearities featuring a
smooth nonlinearity due to Hertzian contact interactions and
a nonsmooth nonlinearity (contact breakings) at the same

time. These features make granular chains fundamentally
different from other nonlinear lattices [such as the discrete
Klein-Gordon (KG) and the discrete nonlinear Schrödinger
(DNLS) systems].

Aiming for a better understanding of energy localization and
transport in polydisperse granular solids, we investigate in this
work the dynamics of a strongly polydisperse granular chain
under single-particle displacements. Polydispersity induces
strong energy localization (Anderson-like localization) in the
system in the linear regime. Here we investigate the fate
of the Anderson-like localization in the presence of granu-
lar nonlinearities by numerically investigating single-particle
displacement excitations. In particular, we study the time
evolution of such excitations starting from the system’s linear
limit, continuing to its weakly nonlinear regime, where we
observe localized chaotic behaviors, and finally moving to the
model’s highly nonlinear regime where energy delocalization
and equipartition occurs.

Note that Anderson localization in other nonlinear lattices
such as the KG and DNLS systems has been extensively studied
[21–25]. For the aforementioned systems, it is now established
that whether nonlinear Anderson localization persists or is
destroyed (leading to energy spreading) is associated with
chaos and has probabilistic features [26]. Our results reveal
a much richer dynamical response, including chaotic energy
spreading, long-lived chaotic Anderson-like localization, and
energy equipartition. In particular, we find that although the
overall system behaves chaotically in the weakly nonlinear
regime, it can exhibit long-lasting energy localization for
particular single-particle excitations.

The paper is organized as follows: in Sec. II, after introduc-
ing the model, we present a normal mode analysis and we high-
light how single-site excitations lead to Anderson-like localiza-
tion in the linear regime. In Sec. III, by performing long-time
simulations in the weakly nonlinear regime, we present the fate
of different initially localized excitations, studying in detail the
energy spreading or its absence and their chaotic dynamics.
Then, in Sec. IV we study the strongly nonlinear regime where
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an equilibrium chaotic state is reached independent of the
initial position excitation. Finally, in Sec. V we summarize
our results and present the conclusions of our study.

II. MODEL, NORMAL MODES, AND LOCALIZATION

The structure studied in this work consists of a chain
of N spherical particles in contact, having masses mn (n =
1,2, . . . ,N ). The corresponding Hamiltonian H (whose value
represents the system’s energy) is given by

H =
N∑

n=1

Hn ≡
N∑

n=1

(
p2

n

2mn

+ Vn

)
, (1)

where Hn and pn = mnu̇n are the energy and momentum
of the nth spherical particle, respectively, with un being the
displacement of this particle from its equilibrium position,
while an overdot denotes differentiation with respect to time.
The potential Vn for each particle is defined as Vn = [V (un) +
V (un+1)]/2, where

V (un) = 2
5An[δn + un−1 − un]5/2

+ − 2
5Anδ

5/2
n

−Anδ
3/2
n (un−1 − un). (2)

In Eq. (1), hard wall boundary conditions, u0 = uN+1 = 0,
are used. In Eq. (2), δn is the relative static overlap due to
a precompression force F acting on the chain and is given
by δn = (F/An)2/3 [27], where An is the contact coefficient
between particles n − 1, n. For spheres of the same material,
An = (2/3)E

√
(Rn−1Rn)/(Rn−1 + Rn)/(1 − ν2) [27], with E ,

ν, and Rn being the elastic modulus, Poisson’s ratio, and the
radius of the n bead, respectively. In our simulations, we choose
units corresponding to a mean radius of R = 0.01 m and a static
force F = 1 N. The elastic modulus is chosen as E = 193 GPa
and the Poisson ratio is ν = 0.3 relevant to stainless steel (316
type). The terms [ ]+ in Eq. (2) vanish when their argument
becomes negative. This happens when a gap between two
particles appears, i.e., un−1 − un > δn. Note that the second
(constant) term of the potential in Eq. (2) is added in order
to have a zero total energy when all particles are in their
equilibrium position, i.e., un = 0 for all n. The last term of
the potential, which is linear in un, does not contribute to the
total energy since all terms cancel out.

We normalize the system by using as a reference the
uniform chain with particles of radius R̃ = (α + 1)R/2, where
α = max(Rn)/min(Rn) is the disorder strength. Then time,
distance, mass, and stiffness are scaled as follows: t → ω̃t ,
δn → δn/δ̃ (un → un/ũ), mn → mn/m̃, and An → An/(6Ã),
where all the quantities with a tilde are calculated at R̃.
Normalization is such that in the case of no disorder (α = 1),
the normalized linear cutoff frequency is ω = 1. The model
composed by Eqs.(1) and (2) has been extensively studied in the
context of granular chains [10–14]. Considering sufficiently
small displacements, un � 1, we obtain a linearized Hamilto-
nian with potential V (un) = Kn(un−1 − un)2/2, where Kn =
(4/3)Anδ

1/2
n [27] is the linear coupling constant.

Aiming at an understanding of energy localization in
strongly polydisperse granular chains, we generate a disorder
setup of N = 100 spheres whose radii Rn are taken from a uni-
form distribution, within the range Rn ∈ [R,αR] with α = 5.

FIG. 1. (a) The random distribution of the normalized radii
considered here. Insets show the spheres in scale, in the neighborhood
of n = 60 and 81. (b) Contour plot of the coefficients log|cn

m|, obtained
when projecting an initial displacement of particle n onto the normal
modes of frequency ω. The color bar on the top of panel (b) is in
logarithmic scale. (c) The participation number P of the eigenmodes
as a function of their frequency. (d)–(f) The largest coefficients |cn

m| for
the initial displacement of particles n = 56, 60, and 81, respectively,
in logarithmic scale.

The considered distribution of normalized radii is shown in
[Fig. 1(a)]. Then, for the rest of the work, we keep this particular
configuration and we investigate the long-time dynamics under
different single-particle displacement excitations.

First, we obtain the harmonic eigenmodes and we calcu-
late their participation number given by the expression P =
1/

∑
h2

n, where hn = Hn/H [Fig. 1(c)]. At low frequencies,
there are around 10 modes with P > 40, namely modes
that exhibit a localization length of the order of the length
of the chain. These modes, called also propagons [28], are
responsible for the transport of energy [29] of the linearized
granular chain, which is an FPU-like lattice. The remaining
modes, called also locons [28], are localized. As an additional
note, we comment that due to the strong polydispersity, there
are at least 20 highly localized modes with P � 3.

In Fig. 1(b) we plot the projection coefficients cn
m of all

the possible single-site displacement excitations (of the form
�u n(0) = [0,0, . . . ,1, . . . ,0]) onto the normal modes of the
harmonic chain. The index n [x axis of Fig. 1(b)] counts the
number of particles that are displaced and m counts the number
of normal modes when they are ordered with increasing
frequency ω [y axis of Fig. 1(b)]. In Figs. 1(d)–1(f) we show
the projection coefficients (with |cn

m| > 10−4) of three cases
onto the normal modes.

From Fig. 1(b), one is able to identify particular single-
particle displacement excitations whose projection coefficients
at the low-frequency regime (where the extended modes are
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located) are highly suppressed. This is monitored by the
existence of white areas at the low-frequency regime (ω<0.2).
As a consequence, these single-site excitations provoke Ander-
son localization, and the initial energy input into the system
remains localized.

Three examples of single-site excitation leading to localiza-
tion are n = 56, 60, and 81, whose coefficients |cn

m| are shown
in Figs. 1(d)–1(f). The case of n = 56 in Fig. 1(d) contains
the strong excitation of one mode at frequency ω ≈ 3.189 and
additional other weakly excited modes. The case of n = 60, as
shown in Fig. 1(e), corresponds to a multiple mode excitation
while the case of 81, as shown in Fig. 1(f), corresponds to an
almost single-mode excitation. Below, we choose to investigate
in detail these three particular cases since they summarize the
different long-time dynamics of an initially localized energy
in the presence of weak nonlinearities. Other choices of initial
single-site excitations bearing similar coefficients to those in
Figs. 1(d)–1(f) exhibit the same behavior.

III. FATE OF LOCALIZATION: WEAKLY
NONLINEAR REGIME

The natural question that arises is how the granular non-
linearities influence the aforementioned localization. Should
we also expect a chaos-induced destruction of localization
and diffusive energy spreading, as is the case of KG and
DNLS lattices? To answer these fundamental questions, we
investigate the long-time dynamics of the chain. In particular,
we perform simulations up to t = 107 normalized time units
using a symplectic integration scheme [30] after initially
displacing particles n = 51, 60, and 81.

We start by studying the case of moderate nonlinearities
by imposing initial displacements corresponding to a small
amount of energy. As we show below, the long-time dynamics
of these three initial excitations, for sufficiently weak nonlin-
earities, exhibit different chaotic behaviors as well as different
energy-spreading mechanisms.

In particular, for particle n = 56, we use an initial energy
H = 0.049, while for particles n = 60 and 81 we use H =
0.192. The corresponding spatiotemporal evolution of the
energy for the three cases is shown in Fig. 2, where the
color map is in a logarithmic scale. The energy spreading
is monitored by calculating the participation number P and
the second energy moment m2 = ∑

n(n − ñ)2Hn, where ñ =∑
nHn. The system’s chaoticity is quantified using the max-

imum Lyapunov characteristic exponent (mLCE) λ [31,32],
which is obtained by numerically integrating both the Hamil-
ton equations of motion and the corresponding variational
equations [33]. The variational equations govern, at first order
of approximation, the time evolution of a deviation vector
�w(t) = [δu1,δu2, . . . ,δun,δp1,δp2, . . . ,δpn], where δui , δpi ,
i = 1,2, . . . ,N , are, respectively, small perturbations from the
studied orbit in positions and momenta (see [32] and references
therein). Note that λ is evaluated as λ = limt→∞�(t), where
�(t) is the so-called finite-time mLCE [32]. For chaotic orbits,
�(t) eventually converges to a positive value, while for regular
orbits it tends to zero following the power law �(t) ∝ t−1 [32].

As is directly seen from Fig. 2, there are differences in
the long-time energy distribution between the three initial
excitations. In addition, from Fig. 2(d) one can also clearly

FIG. 2. (a)–(c) The spatiotemporal evolution of energy after
exciting particle n = 56 (a) with energy H = 0.049 and particles
n = 60 (b) and n = 81 (c) with energies H = 0.192. Color bars on
top of the panels are in logarithmic scale. The solid curves show the
mean position of the energy distribution. (d) The finite-time mLCE
�(t) as a function of time for the three different cases of panels (a)–(c).
The dashed line denotes the law �(t) ∝ t−1 appearing for the case of
regular motion.

see that in all cases, �(t) eventually diverges from the law
proportional to t−1 (denoted by the dashed line) and thus the
system exhibits chaos.

A. Energy spreading and weak chaos

We first study in detail the dynamics resulting from the
excitation of particle 56 shown in Fig. 2(a). As is observed, the
energy remains almost localized around particle 56, at least up
to t ≈ 105, and then energy appears to be spreading to more
particles. The mean energy position, shown with the solid line,
exhibits characteristic oscillations. These oscillations are more
evident in the evolution of m2 and on the participation number
P shown in Fig. 3. From this figure we see that although the
energy remains localized, initially it is exchanged between

FIG. 3. Time evolution of the second energy moment m2 (a) and
the participation number P (b) after the initial displacement of particle
n = 56 with energy H = 0.049. The solid curves correspond to the
running averages of the plotted quantities.
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FIG. 4. (a) The power spectral density (PSD) of the velocity
of particle n = 56. The circles in the top of the panel indicate
the eigenfrequencies of the linear system, while the frequencies
corresponding to the three highest peaks of the PSD are denoted as ω1,
ω2, and ω3. (b) The time evolution of the logarithm of the amplitude
F̂ω1 of the PSD (a) at frequency ω1. (c) The same as (b) but for the
amplitudes F̂ω2 (solid curve) and F̂ω3 (dashed curve) of frequencies ω2

and ω3 of (a). (d)–(f) The three linear eigenvectors with frequencies
close to the shifted frequencies ω1, ω2, and ω3 of (a). The vertical
dashed line denotes the position of particle n = 56.

two to eight particles. At t ≈ 104, m2 starts increasing with a
small slope, suggesting a slow spreading, while after t ≈ 106

it tends to increase with an even larger slope signaling a faster
spreading also evident in the energy profile in Fig. 2(a). As
the energy spreads, more particles (degrees of freedom) are
excited and the total amount of energy is distributed to more
and more particles.

Accordingly, the finite-time mLCE �(t) for this excitation
shown in Fig. 2(d) is found to deviate from the law �(t) ∝ t−1

appearing for the case of regular motion and thus the dynamics
is chaotic. However, since most of the degrees of freedom
are initially “mute” and start to contribute to the dynamics
only when the energy slowly spreads, �(t) does not reach
a constant positive value but rather decreases with a slope
�(t) ∝ t−ν , where ν < 1. Similar behavior was also observed
in Ref. [25] for a KG lattice, and this behavior was associated
with nonequilibrium chaos.

To explain the initial oscillations of the mean energy
position of m2 and P , we show in Fig. 4(a) the power spectral
density (PSD) of the velocity of particle n = 56, for a time
window of length �t = 1.6×103 starting from t = 0. The
largest peak of the PSD at frequency ω1 ≈ 3.189 corresponds
to the localized linear mode with frequency 	1 = 3.211, also
indicated by the (red) circle on the right of peak F̂ω1 , which is
shifted due to nonlinearity. The peaks at smaller frequencies

correspond to other modes that were weakly excited from
the beginning [see Fig. 1(d)]. A nonlinear shift to smaller
frequencies appears for these peaks of the spectrum, too. The
remaining peaks of the PSD correspond to second harmonics
and all the linear combinations of the initial excited modes.
By taking into account these nonlinear shifts, it appears that
the two peaks at ω2 ≈ 2.176 and ω3 ≈ 1.013 are such that the
condition ω1 = ω2 + ω3 is satisfied. It is exactly this resonance
that allows the energy transfer from the dominant mode to the
other two modes.

To monitor the time dependence of the different excited
frequencies, we calculate the PSD of the velocity of particle
n = 56 for a moving window �t . In Fig. 4(b) we plot the
evolution of the amplitude of the PSD at frequency ω1, namely
F̂ω1 , and in Fig. 4(c) we show both the amplitudes F̂ω2 and
F̂ω3 of the other frequencies (ω2 and ω3). We observe that
the Fourier amplitudes perform characteristic oscillations, and
whenever the amplitude of frequency ω1 is decreasing, the
amplitudes of ω2 and ω3 are increasing, and vice versa,
indicating that energy is transferred between the three most
excited nonlinear modes.

Furthermore, these oscillations have a direct impact on the
evolution of m2(t) and P (t) shown in Fig. 3, which can be
explained as follows. The linear modes corresponding to the
three interacting nonlinear modes are shown in Figs. 4(d)–4(f).
The labeling of modes is done by ascending frequency order
(i.e., mode 100 has the largest eigenfrequency). Mode i = 98,
which is the dominant one, is very localized at particle n = 56,
with a participation number P ≈ 2.7. The other two modes
(i = 93,67), however, are more extended (to the right of bead
n = 56) with participation numbers P ≈ 5.98 and P ≈ 8.25
for i = 93 and 67, respectively. When energy is transferred
from the dominant mode to the other two, the participation
number P of the total energy distribution is expected to
increase, along with m2. This is exactly what we observe in
Fig. 3.

B. Abrupt energy spreading

The evolution of the energy distribution, when the particle
n = 60 is initially excited with energy H = 0.192, is shown
in Fig. 2(b), and the wave packet appears to remain localized
at least up to t ≈ 106. As is shown in Fig. 5(a), during this
time interval the energy spreading, as measured by m2, is very
slow since m2 has a small positive slope. Then at t ≈ 2×106 an

FIG. 5. Same as in Fig. 3, but for the initial excitation of particle
n = 60 with energy H = 0.192.
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abrupt spreading of energy appears as indicated by the vertical
dashed line in Fig. 5 showing the sudden increase of m2. A
similar behavior is also found for the participation number P .
It is found that initially [Fig. 5(b)] an average of five particles
are involved in the dynamics of the chain, but after t ≈ 2×106

more degrees of freedom are excited and the participation
number finally reaches a maximum value of P ≈ 60 [this is
the largest value of P obtained by the most extended linear
modes shown in Fig. 1(c)]. Similar abrupt spreading has been
previously observed in KG and DNLS systems [23].

The above description of the dynamics of the chain has
a direct imprint in the evolution of the corresponding �(t)
shown in Fig. 2(j). There, we first observe a primal phase
of regular behavior up to t ≈ 2×104. Then, during the very
slow spreading phase, which follows for 2×104 � t � 2×106,
�(t) starts deviating from the ∝ t−1 law taking a value
�(t) ≈ 10−4. This behavior of �(t) indicates that the weakly
spreading phase is connected to a slow thermalization process
induced by the corresponding chaotic dephasing of the initially
excited normal modes. However, following the abrupt energy
spreading discussed in the previous paragraph, �(t) exhibits a
“jump” to higher values. This jump is related to the transition
of the motion from a “small chaotic sea,” which is confined
in a small subset of the system’s phase space, i.e., the motion
of a few sites around particle n = 60, to a “large chaotic sea,”
which occupies almost all phase space, i.e., the chaotic motion
of the whole chain (a similar transition was reported in [34]).

C. Localized chaotic motion

In Fig. 2(c), we see the spatiotemporal evolution of the
energy after exciting particle n = 81 with H = 0.192. Here
we have a unique behavior. Contrary to the two other cases,
we do not observe a destruction of the energy localization, at
least for the considered integration times. The fact that energy
remains localized is also seen by the running mean value of
the second moment m2 and the participation number P shown
in Figs. 6(a) and 6(b), respectively, which are found to remain
almost constant throughout the total time of integration. In fact,
according to Fig. 2(c) only particles n = 80−82 significantly
contribute in the dynamics of the system and thus P ≈ 2.

What is more interesting in this case is that even though the
energy remains confined, the system is found to be chaotic
(nevertheless with a small Lyapunov exponent) with �(t)
reaching a constant value, as shown in Fig. 2(d). In addition,

FIG. 6. Same as in Fig. 3, but for the initial excitation of particle
n = 81 with energy H = 0.192.

FIG. 7. (a) The PSD taken from the velocity of particle n = 81 for
a time interval of duration �t = 5000 time units, after t = 4.95×105.
(b) The gaps appearing in the chain as a function of time t and particle
position n. (c) The total number of gaps in the chain as a function of
time. The solid line indicates the running average.

the constancy of �(t) for t � 2×105 stems from the fact that no
more degrees of freedom are activated at least up to t = 107.
Thus, for this particular case, chaoticity is not sufficient to
induce the spreading of the wave packet. We note here that
eventually this chaotic response could lead to energy spreading
through very slow processes such as Arnold diffusion [35–37],
but here a long-lasting spatially confined chaos is reported in
a disordered, nondegenerate lattice system.

To further understand this behavior, we observe from
the corresponding frequency spectrum shown in Fig. 7(a)
that only a finite range of frequencies located around the
fundamental ones (and their higher harmonics) are excited.
However, the three particles that contribute to the evolution,
i.e., n = 80−82, do not participate to linear modes within
this range of frequencies [see the red square of Fig. 1(b)] and
thus the energy remains confined to the particles n = 80−82.
This qualitatively explains the robustness of this Anderson-like
localization despite the chaotic nature of the wave packet.

We also note that, as shown in panels (b) and (c) of Fig. 7,
during the evolution a single gap between particle n = 81 and
its first neighbors appears. Note that no gap opening appears for
the cases of particles n = 56 and 60. This observation is in line
with the results of Ref. [38], where a localized chaotic behavior
was found due to a nonsmooth nonlinearity. However, in that
model the linear limit is described by uncoupled oscillators
(one particle per mode), while in our case the localized
Anderson-like excitation coexists with the extended modes.

IV. FATE OF LOCALIZATION: HIGHLY
NONLINEAR REGIME

We furthermore study the dynamics of the chain after single-
particle displacements with energies an order of magnitude
larger than those of Fig. 2 to investigate the effect of stronger
nonlinearities. Characteristic examples of the energy evolution
in this regime are shown in Figs. 8(a) and 8(b), after the initial
displacement of particles n = 60 and 81, respectively, with
H = 2.76. Note that in both cases, in order to achieve such
a large energy value, the initial displacement of the particles
is larger than their overlap, δn, and initially a gap between
beads is created. It is directly evident from Figs. 8(a) and 8(b)
that both wave packets remain initially localized but finally
spread throughout the whole chain, as is also indicated by
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FIG. 8. (a) and (b) Contour plots showing the spatiotemporal
evolution of the energy after exciting particles n = 60 (a) and n = 81
(b) with energy H1 = 2.76. The color bar on the right is in logarithmic
scale. (c) and (d) The second energy moment m2 as a function of
time for the corresponding top panels. (e) and (f) The participation
number P corresponding to the evolution shown in panels (a) and
(b), respectively. The solid lines in panels (c)–(f) indicate the running
average.

the mean position of the energy distribution, which finally
oscillates around the chain’s center for t � 104. The evolution
of m2 is quite similar for the two cases and is found to
saturate around the same value m2 ≈ 103 [Figs. 8(c) and 8(d)].
Similarly, P saturates to a constant value around P ≈ 60 for
both excitations [Figs. 8(e) and 8(f)].

One of the most fundamental differences found between the
dynamics for moderate and strong initial displacements is the
evolution of gaps (contacts breaking) in the chain, shown in
Fig. 9. For sufficiently strong initial excitations, according to
the results shown in Figs. 9(a) and 9(b), the gap located around
the originally excited particle induces additional gaps that are

FIG. 9. (a),(b) The gaps appearing in the chain as a function
of time t and particle position n for the case of initially exciting
particle n = 60 (a) and particle n = 81 (b) with H = 2.76. Each gap
is represented by a vertical segment. (c),(d) The total number of gaps
in the chain as a function of time for the cases of panels (a) and (b),
respectively. Solid lines correspond to the running average of each
panel.

FIG. 10. (a) The finite-time mLCE �(t) and (b) the spectral
entropy η(t) as a function of time for the cases of panels (a) and (b) of
Fig. 8. The dashed line in (a) denotes the law �(t) ∝ t−1 appearing
for the case of regular motion.

finally transmitted throughout the chain. In fact, according
to the total number of gaps shown in Figs. 9(c) and 9(d),
at different times more than one gap appears in the system.
However, at the end of the simulations, for the two different
excitations the running average of the number of gaps saturates
to a value close to 1.

It is due to the above-mentioned differences that also the
chaoticity in this regime, as quantified by �(t) and shown in
Fig. 10(a), is also different from the weakly nonlinear case.
Here, a clear chaotic behavior for about four decades of our
simulations (102 � t � 106) is found as �(t) clearly deviates
from the ∝ t−1 law [dashed line in Fig. 10(a)]. Furthermore,
for both initial excitations, after about t ≈ 106, �(t) saturates
to almost the same constant, positive value. The evolution of
�(t) for 102 � t � 106 follows the transient chaotic behavior
of the chain, where energy spreading takes place with more
degrees of freedom being activated but also the number of gap
openings is changing [see Figs. 9(a) and 9(b)].

The fact that the running average values of m2, P (Fig. 8),
the value of �(t) (Fig. 10), and the number of gaps in the
chain (Fig. 9) saturate to the same values for both excitations
suggests that the system finally reaches an equilibrium state
characterized by equipartition of energy. To quantify energy
equipartition, we use the spectral entropy S(t) defined by
[39,40]

S(t) = −
N∑

k=1

wk(t) ln [wk(t)], (3)

where wk = Ek/
∑N

k=1 Ek are weights given by the fraction of
the total harmonic energy Ek in the kth normal mode. We note
that the value of Ek is obtained by projecting the displacement
and momentum vectors (�u(t), �̇u(t)) onto the linear normal
modes ( �Q(t), �̇Q(t)) and calculating the energy associated with
each mode Ek = (Q̇k + ω2

kQk)/2. This entropy is equal to 0 if
all the energy is associated with only one of the linear modes,
say mode s, since then ws = 1 and wn�=s = 0. On the other
hand, S acquires its maximum value if energy equipartition
is achieved and all modes carry the same amount of energy.
Note that this maximum value depends on the total number
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of oscillators N . To measure a quantity independent of the
number of degrees of freedom, we calculate the normalized
spectral entropy

η(t) = S(t) − Smax

S(t) − S(0)
, (4)

where Smax is the maximum measured entropy. In this case,
η = 1 indicates a “freezing” of the initial excitation, where all
the energy remains in the initially excited modes, while η → 0
denotes equipartition. From the evolution of η(t) in Fig. 10(b),
we observe that, after some relaxation time, η(t) saturates to
a value η ≈ 0.01 for both initial excitations. This behavior
strongly supports the assumption that a final equilibrium state,
characterized by energy equipartition with the same statistical
characteristics for any initial condition with the same total
energy, is reached. Importantly, this is not always the case in
the weakly nonlinear regime where only for particular initial
excitations at a given energy is an equipartition reached [41].
This is the case of initially exciting particle n = 60 with
H = 0.192 [shown in Fig. 2(b)], where we have confirmed
an energy equipartition at the end of the simulation.

V. SUMMARY AND CONCLUSIONS

In this work, we studied the energy spreading and the chaotic
behavior of a finite, nonlinear, and strongly disordered granular
chain model. The considered system has two types of non-
linearities: smooth ones due to Hertzian contact interactions
between neighboring particles, and nonsmooth nonlinearities
related to contact breakings and the appearance of gaps in the
chain.

An important outcome of our work is that based on the
spatiotemporal properties of the corresponding linear lattice,
we were able to propose a prescription for identifying ini-
tial single-particle excitations leading to localized energy
propagation. As the system has both localized and extended
eigenmodes, such initial single-particle displacements should
be sought among the ones that do not excite low frequency,
extended eigenmodes because such modes could, in principle,
destroy localization. Aiming additionally at the generation of
long-lived Anderson-like localization, one has to also further
restrict the choice among these excitations by also considering
the ones that excite as few as possible localized eigenmodes.
This additional restriction decreases the possibility of the
appearance of resonances between the excited modes, which in
turn could lead to energy spreading. The visual identification
of initial single-particle displacement excitations that satisfy
these two conditions is facilitated by the creation of a contour

plot of the size of the projection coefficients of all possible
initial excitations onto the eigenmodes in the “eigenmode
frequency”-“index of excited site” space [Fig. 1(b)]. We note
that such plots could be used for finding also more general
initial excitations that could lead to long-lasting energy local-
ization.

Implementing this strategy, we managed to indeed identify
several initial single-particle displacement excitations, which
led to the creation of localized chaotic motions of various life
spans. In Sec. III we discussed in detail the characteristics of
three representative cases corresponding to the initial excita-
tion of particles n = 56, 60, and 81 of the particular granular
chain realization we considered here. The time evolution of
the corresponding finite-time maximum Lyapunov exponent
revealed the chaotic nature of all these cases. More specifically,
we found an initial excitation (n = 56) that, after a transient
localized phase, resulted in a rather slow energy spreading.
This behavior was induced by the appearance of a nonlinear
resonant interaction between the excited modes. In another
case (n = 60), an initial phase of energy localization, charac-
terized by an extremely slow spreading, was followed by an
abrupt increase of chaoticity due to a jump in phase space from
a “small” to a “large” chaotic sea, finally leading to extended
chaotic motions and energy spreading throughout the lattice.

Another main outcome of our study was the presentation of
an initial excitation (n = 81) that led to long-lived (at least
until the final integration time of our simulations) energy
localization. This is a significant result as we were able to
provide an example of long-lasting, chaotic, Anderson-like
localization in a system supporting extended eigenmodes. This
initial excitation was identified by the above-mentioned pre-
scription, and it led to the excitation of almost one eigenmode,
which was practically isolated in the “frequency”-“site” space
of Fig. 1(b), i.e., it did not have any strong interactions with
other modes, and especially extended (low-frequency) modes
were not sufficiently excited.

Finally, for sufficiently strong initial excitations the coexis-
tence of anharmonic nearest-neighbor nonlinearities and gaps
led to a chaotic destruction of localization, and the system
finally reached an energy equipartition state, independent of
the initial displacement excitation.
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